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A conservative difference scheme is given for a model of nonlinear dispersive waves.
Convergence and stability of the scheme are proved. By means of this scheme, we explore
numerically the relationship between the boundary data and the amplitudes and number of
solitary waves it produces. © 1991 Academic Press, Inc.

1. INTRODUCTION

In recent years, a vast amount of work and computation has been devoted to the
initial value problem for the KdV equation. Under the assumption of small
amplitude and large wavelength, the KdV equation was derived for water waves
and it is similarly justifiable as a model for long wave in many other physical
systems. However, in view of the order of magnitude of the terms in KdV equation,
another equation for nonlinear dispersive waves can be derived,

U+U +puv,. —y 2. U, =0, (1.1)

where f>=0 and y > 0 are constants. Eq. (1.1) and the KdV equation are advocated
as models for the same physical phenomena and are valid to the same accuracy.
Eq. (1.1) has been studied by several workers. Mathematical theory for the equa-
tion was considered in [1, 2, 57]. Bona er al. [2] have compared the equation with
the results of some experiments. Several numerical methods for solving Eq. (1.1)
have been developed [4-8, 10]. In this paper, we present a conservative difference
scheme for Eq. (1.1), which keeps two conservation laws that the differential equa-
tion (1.1) possesses. The conservative property of the difference scheme is signifi-
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cant, especially. when solitary solutions are studied numerically. Convergence and
stability of the scheme are proved.

Solitary waves induced by boundary motion were studied for the KdV equation
in Chu er al. [37. Their results are interesting, and we shali also study the solitary
waves induced by boundary motion for Eq. (1.1), by means of our conservativs
difference scheme.

2. NUMERICAL METHOD

We consider the initial-boundary value problem for the mode! of nonlinear
dispersive waves

U+ U, +BUU,—y U, =0, O<x<x,, >0, (2
Ul._q=0, Uleay, =5, >0, 2
Ul,_o=Uslx), O<x<xy. 2N

As usual, the following notations are used

Ui~ Ulx;, 1) x=jh t"=n-1,0< i</ n=0,1.2, ..,

: 1 . , [
(7= (Ui, ~U)), (U))e=7 (U] = U )
(Criu—l‘b__l( /rn+1_Lrn) U™ _i{{/{ﬂ ey
T 7 17 ( PR 5y et T Y
'YI1+12_1 ra+1 TR T2 ‘nXL! Tiy 73172
U= (U R U, UNL, = W0 )P dy,
“ “0
J—1 J-1
wz=h 3y U NUL=h 3 WU
y=1 J=9
1= sup |U7I

lsjsi—1

where #= X, /J and 1 are step sizes of space and time, respeciively.
Multiplying (2.1} by U and integrating it from 0 t¢c X, it is easy to get a conser-
vation law for the problem {2.1)-{2.3)

[
S

Bl = Ui+ MU L= 10l 40 = Const. 1
Using a customary designation, we shall refer to the functional E(:) as the encrgy
integral, although it is not necessarily identifiable with energy in the original
physical problem.



362 CHANG, WANG, AND GUO

Our proposed difference scheme for problem (2.1)-(2.3) is

(U;-H—l)g‘f‘ (an+ 1/2))%_,}) r~2(UJr_z+1)Xﬂ_+§ {U}H— 12, (U_;I-th).\:-" [(u\;z+1,"2)2]x}
=0, 1<j<J—1,n=01,2,.., (2.5)
Un=0, Us=0 (2.6)
Ul=Uyx,), 1<j<J-1 (2.7)

Multiplying (2.5) by 2- U}*"? and summing over j, we have

St Il
Y LU (UIP1+2 Y (U U
J=1 i=1

J—

) ) U U

A | o=

J—1
_?’E{Z: (Un+17 Un+l’2) + Z [(Ul;x+1/’2)2]f_U},Jr“:}

j=1

=0, 1<jgJ/-1,nr=0,1,2,., (2.8)
In view of difference properties and the boundary conditions (2.6), we obtain

J-1 1 -

n+ 172 n+ 12 __ n+1:2 n+12 n+ 12 n+1:2
Z(Uj )e U =3 Z LUy = Uy =Uin Uy 1
= L A- P

J

i Un+17 Un+12 ?‘ Un+l7 U"+1'2]—0,

1
h o J+1

Jj=1

J-1 1 rJ—1 )
Z (Ur‘x+1)xx[.U;l+1;2=_ Z (Ul;-f-l‘)xi_Un+1"' (U;zj-ll) U]'-H'l‘z
= . hL o !
Jj= L=
1_./ 1 J~1
n n 2 n n
2;1_ z (U +1))CIU + 1, Z (Uj+l)x1 Uj:[lel
1~l j=0
1_./ 1 . J—1
ZZ z (U}l+l)x['U;‘l+1f~_ Z (Ujr_l+1)w an++112:]
Ly=0 j=0
J—-1
== ¥ (U ) (U7H2),
j=0

-5 _‘Z (LU, = LD,
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J—1 1./—1
232 T 17 +1" s+ 12 spra+ 1232 yra4+il
Z sl]}zﬂ»lz) -(L’;l+ ,,\‘r Z [ 7n [//4_1 '[«Dj ) L_ir—l ]
i=1 1*‘
Jfl 7
1 n+l"" rra+ 12 r;z+i:.4 yjn+ i'!
= — 2 (L,/~1 LJ] - Z’I+1 ‘/’, 1
2h j=1 1;1 =
J—1
T+ 1232 rn+12
= - Z [(Ll )]‘[, .

j=1

Combining this result with (2.8) yields

J—1

; Z [(67;l+1)2*(U7):]+”,' 2 2 Z {[(UY’H—I :E:"[([J -E )?__0

J=1

n=0,1,2, ..

ie.,

e R e L e L N L
= Const.. n=0,1,2, ..

|

,m
!\J
el

Comparing {2.9) with the conservation law of energy {2.4) that the dlffermnas
problem {2.1)}-(2.3) possesses, we can see the scheme {2.5)-(2.7) preserves a discre
analog of this conservation law. For this reason we call the scheme (2.5}-42.7)
conservative. Furthermore, we consider the initial value problem for Eq. (1.1}

U+ U+ pUU,—y*U,.,=0, —w<x<w, >0, (210
Ul,_o=Upy(x), — <X < W (211

Assume U, U,, U,— 0 when |x| - o. It is obvious that the conservation law of
gnergy is valid for the problem (2.10), (2.11) and the corresponding difference

problem (2.5), (2.7). Integrating (2.10) for x, we cbtain another conservation law
for the problem (2.10), (2.11),

J" | Utxnydy=|  Ugix) dx=Const (2.12)
Summing {2.5) over j we find
Y U= ¥ Ulx)=Const. (2.3}

Therefore, for the initial value problem (2.10), {2.11}, the conservative schere
preserves discrete versions of two basic conservation laws. The difference scheme
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(2.5)(2.7) is a system of nonlinear algebraic equations. We give an iterative
method to solve it by the formulas

a+ 1(s) | n+L(s+ 1) n+L(s) n+l{s+1) n+1(s) a4+ ls+ 1)
4] Ui + Bj Uj +C7 vt

_—=FJ’,’+“”, 1<j<J-1,rn=0,1,2, .., (2.14)
=0, Uy=0,  n=0,1,2,., (215)
U= Uy(x)), Ui+t = U7, 1<j</—-1,n=0,1,2, .. (2.16)
where
5 1 T T n § n
A}H'”’): —ZE+E+24.II(U_/:IM )+ Uj+l)’
2 T T
n sy P n+1(s n n 5 n
Byt =15 (U URL ) = (U5 ),
I T ,
C,‘,+1(S)___ _____ o U’}+1(S) n ,
g TR TIAL R R
" (s 1 T T n s n n
Fj+“)=[‘F_4_h_m((]j:1uJ+Uj+1)j|'Uj+1
2 4 n ) n T 1+ 1(s n )
R R U Vg e )|

. T "
n JER T — n 5) fa . n
XUj+[_—/12+4h+24-h(U’jjl +U7_ )| U7
The time needed to compute A;*'®) BrH e, C}’*”"’, and F;’*”” can be
reduced by not unnecessarily computing quantities like

T T .
m (U7:11(5)+ Uj'-'+1) and m (U}z:rll(s)_,_ U;"—l);

they are not recomputed unnecessarily. Equations (2.14)-(2.16) are a system of
linear tridiagonal equations for U7*'“*", aftger U7*'* are obtained. Hence,
U7+'¢* Y can be obtained as the formulas

U}H— s+ 1) f,-U"+“””+77j, j=J-1,7-2,..1,

j+1
ll"+l( +1) _
J } 0’

(2.17)

where
__ 4n+1(s) n+ I(s) __ n+ [(s) K
- 4; 7 _F ¢; Mj-1
J T pn+ is) n+1(s)  r ’ J T pn+1(s) n+1(s) £ 4
B; +C; $ioa B +C7 $it

it

Yy

é()zov ’7020
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Our experience has been that the iterative method (2.14)+(2.17) is guickly
convergent for solving several systems of nonlinear equations, which are deduced
from the differential equations.

3. SoLITARY WAVES INDUCED BY BOUNDARY MOTION

Until now, most work has been devoted to the behavior of solizary waves n
unbounded domains. However, the mathematical models for many real physical
phenomena are precisely initial boundary value problems of partial differential
equations. For example, the production and propagation of water waves in a
channel belongs to this case. Now we study these problems numerically and hope
that interesting physical phenomena and mathematical properties can be uncovered
by means of computational results.

In this section, the initial boundary value problem (2.1-(2.3} is modified to

U+ U.+UU.—U,.,—0. O<x<x, i>0 (1)
Ul o= fil1), Ule,, =0, >0, (323
Ul,_o=Ud(x), O<x<x,. (3.2)

and right boundary x, is taken large enough to ignore its influence. Our intertion
is to explore the relationship between the amplitudes and numbers of the solitary
waves produced and the boundary data given.

First, we take Uy(x) =0 and compute the solitary waves produced by a boundary
pulse f,(¢) of identical amplitude 4,=2 and duration 4:=20 (See Fig. 1).

In computations, we take =04, 1=0.1 and the results are shown in Table 1.
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Fig. 1. Boundary pulse (i) given at x=0.
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TABLE I

Solitary Waves Induced by a Boundary Pulse

Amplitude of solitary wave

r 1 2 3 4 5
2.5 2.2337
5.0 1.8614 2.7619
10.0 2.5218 3.2387
20.0 1.8560 2.3678 2.7327 3.4381
40.0 0.9804 23173 3.0720 3.4893 3.7065
60.0 0.9803 23154 3.0681 3.5108 3.7478
80.0 0.9802 2.3146 3.0665 3.5128 3.7622
100.0 0.9801 2.3140 3.0660 3.5120 3.7620

Figure 2 shows the solitary waves at = 100. There are five solitary waves in this
case. The amplitude of the last solitary wave is less than 2, since the boundary pulse

was cut off during its formation at ¢ = 20.

Velocities of computational solitary waves and their relationship with the

amplitudes are given in Table IL
The single solitary wave solution of Eq. (3.1) has the form

where A=3a’/(1—a?), K=%a, w=a/2(1—a?), and a and J are arbitrary

U= A -Sech’(kx — wt + §),

constants. It is clear that the velocity v of the solitary wave can be written as

3.00

2.00

l_k_l—az 3
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0.00 130.00 180.00 230.00

FiG. 2. Solitary waves at ¢ = 100.
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FiGg. 3. Initial pulse Uy(x) given at 1=0.

Table 1I shows that the velocity of every solitary wave 1s equal to one plus a third
of its amplitude. This velocity is precisely the velocity of a singic solitary wave of
sech-squared shape.

For the identical pulse amplitude 4, =2, solitary waves for various durations are
given in Table [1I. When duration is fixed at Ar=20, solitary waves for several
pulse amplitades are given in Table [V.

As a comparison, we take f,(¢) =0 and compute the solitary waves produced by
initial value Uy(x). The pulse Ugy(x) is located in interval [x,, x,] and has identical
amplitude 4,=2 (see Fig. 3). Solitary waves for various initial pulses are given in
Table V. Figure 4 shows the solitary waves for x, =20.0. x,=31.6.
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FiG. 4. Solitary waves produced by initial value Ug{x) and x; =20.0, x,=131.6.



TABLE II

Velocities of Solitary Waves for ¢ > 40

Solitary wave Amplitude 4 1+A4/3 Velocity
1 0.98 1.3266 1.33
2 231 1.7700 1.77
3 3.07 2.0233 2.02
4 351 2.1700 217
5 3.76 2.2533 225
TABLE III

Solitary Waves for Various Durations of the Boundary Value Pulse with 4,=2.0

Amplitude of solitary wave

Duration Time
At 4 1 2 3 4 5 6 7 8 9 10 11 12

50.0 200.0 0.6753 1.5216 2.0845 2.5240 2.8351 3.1618 3.3532 3.4816 3.5965 3.6987 3.7844 3.8643
35.0 1500 0.1652 1.3704 2.1522 2.6881 3.0738 3.3485 3.5843 3.6902 3.8110
200 100.0  0.9801 2.3140 3.0660 3.5120 3.7620
10.0 100.0 04773 2.5906 3.5855
4.0 1000 25164
30 100.0 1.8588
20 300 1.0842¢

“ There is not stable solitary wave.

TABLE 1V
Solitary Waves for Several Amplitudes of the Boundary Value Pulse with 47 =20.0

Amplitude of solitary wave

Pulse amplitude  Time

A, ! 1 2 3 4 5 6 7 8 9 10
5.0 100.0  0.7249 4.4651 59871 6.9481 7.7501 8.3676 8.8621 9.1220 9.2356 9.3393
1.0 100.0  0.8056 1.4709 1.8314
0.5 100.0 04962 0.8457

TABLE V

Solitary Waves for Various Initial Pulses

Initial pulse Amplitude of solitary wave

Time

x| X3 t 1 2 3 4 5 6 7 8 9

20.0 36.0 1000 0.6253 1.0512 1.5236 2.0074 24742 29143 3.2368 3.5669 3.7551
20.0 31.6 100.0  0.6151 1.0810 17078 2.3437 29221 3.4081 3.7291
20.0 30.0 100.0  0.6054 1.2781 20012 2.7025 3.2974 3.6963

368



98]
[N
&

CONSERVATIVE SCHEME AND INDUCED SOLITARY WAVES

These tables and figures demonstrates a steady non-oscillating, long pulse at the
boundary can produce a train of stable solitary waves whose ampiitudes
progressively decrease. The amplitudes of the induced waves are governed mainiy
by the amplitude of the boundary pulse, while the number of the induced waves
depends on the duration and amplitude of the boundary pulse. Furthermore, the
initia]l pulse can also produce a train of stable solitary waves, which is similar t¢
that produced by the boundary pulse.

4. DISCUSSION FOR NUMERICAL METHOD

(1) Convergence and Stability of the Difference Scheme

Now, we consider convergence and stability of the conservative difference scheme
(2.5)-(2.7).

LemMa | {discrete Sobolev inequality [9]). There are constants C, and €, suck
that

17|

« SCIU"+C TUEL

LEMMA 2. Assume Y(1) 20 and there exist constants Cy and C, such thar

n—1

Y(nt) < Cy+ Cyt Y, Yikt),  O0<nt<T:

k=0

then we hare
Ynt) < Cy-e“, O0gnrgT.
Proof. Consider ordinary differential equation
p'()=Cio(t),  @0)=Cs.

Its exact solution is ¢(t)= C,- C. It follows from ¢{:) =0,

5

olr+1)—@(t)= r(p’(t)-i—%q)"(t-i— 8ty

Tt
=r<p’(t)+—7—c‘<p(!+6‘r)>rwp'(.r).

Thus,



370 CHANG, WANG, AND GUO

o(nt)—p(0)= Y, [o((k+1)7)— g(kr)]

k=0

n—1 n—~1
21 ) @'(kn)>1-Cy- Y olkt)
k=0 k=0
n—1

o(nt) 2 Cy+1-Cy- Y olkr).

Now, we are to prove by contradiction that ¢(nt) = y(nt). Assume

¢(11T){<¢(m)’ n<n <[T/t],

> o(nt), n=n,.
Then
n—1 nm—1
o(ny7)—Y(n 1) = C3+1C, Z @lkt) - C3—1C,4 Z Y(kt) =0
k=0 k=0

This is in contradiction to y(n,7) > ¢(n, 7). Therefore, the lemma is proved.

LemMa 3. Assume Uy(x)e H[0, x,71; then there is the estimate for the solution
of the difference scheme (2.5)-(2.7),

10" 1< Co,  NUMI<Co, UM < Co,
where C, is a constant independent of h and t.

Proof.  Without loss of generality, we can assume that / is chosen so small that
there are

WU =h'S [Usfx)T’

j=1

XL
<2 |U)1P dx =2 U,
0

HUO 2 - Uo(xjﬂ)‘Uo(xj) ?
* h
= | dUy(x)|? IdUo(x )|?
2 P A4
S-L Ix dx = 1 '

Thus, the conservation formula (2.9) yields

[U" <Const.,  [U%]| < Const.
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It follows from the Lemma 1 that

U™ ., < Const.

TuroreM 1. Assume Uy(x)e Hy[0, x; 1 and for the solution of the problem
(2.1)0-{2.3), U(x, 1)e C'*3. Then the solution of the conservative scheme (2.5)-(2.7)
converges to the solution of the problem (2.1)+2.3) with order O(1"+ ") by L,
norm.

Proof. Substituting the solution of the differential equation U{x, t) into the
scheme (2.5) and making Taylor’s expansion, we have from (2.5)

LUGR, (n+ 1))+ (STu(h (n+ D)+ Ujh, nt) ]}

—y UGh, (n+ 1)1)] 5+ ﬁ{ LUk, {7+ 1Yty + U jh, nt}]

1
U{jh, (n+ 1)1) + U(jh, nt)]i—i'z LHUGhA, (n+ oy + U jh, m))z}_{.z&
P

Nlr-—*

=R,  1<j<J—1,n=0,1,2, .., (4

;e

where R} is the truncation error and max, ., , |R}|<Const- (% + 2%,
C<<nr< T Let &} = U(jh, nt)— U7; then it follows from (2.5) and {4.1) that

~ 1 2 ay— 2 1
e e A (TR

g (1
+§ ég LU, (n+ 1))+ U(jh, n)] - [UGR, (n+ V1) + U, nt) ) ;
SN

! \ 3

Z Uk, (n+ 1))+ U(jh, nt))" ¢

{r1+1- (UnTIZ) _[(U}z-rlZ)Z}f}:Rjr_ii, ;423
eo=0, e =0, {4.3}
&) =0. {44

In view of difference properties and boundary condition, we have

J—1

Z (Sj»hL LZ)E . 8;-l+ 1,2 =0’

7 j XXt ’l

> 1 > 2
Z (Pn-rl) ”6’14-1,.,:_5_ !'( n+1 }‘1_[{5}1}.‘(];}5

j=1



372 CHANG, WANG, AND GUO

i { LUGh, (n+1)T)+ U(jh, nt)] - LUk, (n+ 1)1) + U(jh, nt)],

n+ 1,2 n+ 1,2 + 12
= Uy (U; )A} ;

" ) J—-1 1 ‘
=Y (U )+ Y 5 LUGA, (n+1)7) + Ujh, n7)]

1 j=1%

: (8n+1,.'2) . '8" + 172
X
J—1
— n+1/2y2 A +1/2
= Z [(8j ) 1e U}l !
j=1

- Z { LUGR, (n+ 1)1+ U(jh, nt)]-ep v 12 cen 12,

{i [(U(h, (n+1)7) + Ulh, 17))?]e— [(U;?*“)z],e} i

J—1
= S {3 Lm0+ O ] 577}
j=1

%

J—1
n+172 n+1/2 n+172 n+ 12
SRS DI KAl ay PR %
Jji=1

J-1
=3 {-21— LUhR, (n+1)1)+ Uk, n1)] -6}’“’2}

j=1 x

n+1/ Z (8"+12 n+12 Un+1/2
j

Multiplying (4.2) by 2¢7* !, summing it up for j and using the above deduction,
we obtain

J—1 l _
% R e S z (T~ [0
j=1 =

2 " n+ 12 == n+ 1,2 n+ 1,2 n+1/2
+ { Z [( +[2 ]X U + Z (8/+ )X '+ U +
j=1
J—1
=2-F Ry-etV
Jj=1

ie.,
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12 2 +1y2
N n+ H +9 . |p': ||
J—1
__HEH“A_L HSHH +2/’l1’ z Rn_ n+l"
J=1
2/3) rJ—i J-t R , 1»“@
. P2 [ '12 + 12 ra+ 12 2 n+ 2 pia+ll
+T!1TLZ R WY (R et B (AR S T P AR
o j=1 ji=1 -4
{45

It foliows from Lemma 3 and the Schwarz inequality that
le” M2+ 2 e P < e 2 +y 2 el
F[IR+ 58" 2+ 5 e
+ 3 BrColllen™ 117 + e + e ™ 17 + e
Let E27 = {lg"™")” + |le”* ') % then

n41

Sy Cyr Y ER. (4.
k=1

<M

'SE%°+T- max ||R*

O<k<[7t]

Assume Cy, -t < L; then there is

"
E!Y'S2EY+2T. max  |RY)P+2C,t 3 EX
0<k<[Ti] —

It follows from (4.4) and Lemma 2 that

E"<2T- max | RF|?-C? T Const- (2 + h*)%
’ O0<k<[T]

We have. in view of Lemma 1,
[E”|l . < Const-{t*+ 4%
it yields convergence.

THEOREM 2. Assume Uy(x)e Hy[0, x, ] and © is chosen properly; then the conser-
vative scheme (2.5)(2.7) is stable for the initial value by L. norm.

vrn

Proof. Suppose there are solutions fo the difference equations U7 and U
which satisfy both the difference scheme (2.5) and the boundary condmrn {2. 5;
But, U)=Uyx)), U)=0(x,). Let &/=Ur—T}. Similarly to the proof of
Theorem |, we can establish equations and the initial condition satisfied by £} and
obtain

1
E'VT I KEY+Co ot Y EL

k=0
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Assume C,, -7 < 3; then there is

Ell.. <Const- | EY| ;

1e., the difference scheme is stable.

(i) Comparison with Crank—Nicolson Scheme

The first scheme one might consider using to solve problem (2.1)-(2.3) is the
Crank-Nicolson (C-N) scheme:
(U7 =y 2 (U et 5L+ BUTT YU )+ 5L+ BUINTT) =0, (4.7)

We compare the conservation scheme (2.5) with the C-N scheme (4.7), through
computing the initial value problem (2.10), (2.11). Taking B =1, y=1, and Uy(x) =
3 -Sech?( (\/5/4)()(— 20)), the exact solution of a single solitary wave described by

(V2 /2
U(x -t)=3 Sech? (—4— (x-20)-\’—7—t). (4.8)
TABLE VI

Computational Results at =100 and A=0.5

Results A V cq, cq,
CPU
time Error Error Error Error
t Method (s) N Value (%) Value (%) Value (%) Value (%)
Exact
solution (4.8) 3.0000 2.0000 16.9705 37.0996

0.5 Conservative

scheme (2.5) 1346 8 29088 —3.04 19600 —2.00 169708 0.0017 37.1173 0.0478

C-N scheme

4.7) 139.6 10 2.8736 --4.21 19550 --2.25 169709 0.0024 37.2129 0.3055
1 Conservative

Scheme (2.5) 99.7 12 27792 -7.36 19100 —4.50 169713 0.0047 37.1585 0.1589

C-N scheme

4.7) 133.1 19 2.6812 —10.63 1.9050 —4.75 169732 0.0159 38.5434 3.8917
2 Conservative

scheme (2.5) 71.3 17 24597 —18.01 18100 —9.50 16.9698 —0.0041 37.2049 0.2838

C-N scheme

4.7) o0

Note. “Error” stands for relative error. N denotes the number of iterations in one step time. 4 and
V are amplitude and velocity, respectively. The iterative algorithm of the C-N scheme (4.7) is divergent
for t=2. The “cq,” and “cq,” are two conservative quantities:
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CONSERVATIVE SCHEME AND INDUCED SOLITARY WAVES

The computational results for the solution (4.8) are given in Table V1. In computa-
tion, the C-N scheme (4.7) is solved by an iterative method which is similar to the
method (2.14)-(2.17) for the conservative scheme (2.5).

Table VI demonstrates that the conservative scheme (2.5) can keep two conser-
vative quantities and is more accurate than the C-N scheme (4.7). Furthermore,
scheme (2.5) requires fewer iterations and less CPU time than the C-N scheme.
Hence, the conservative scheme (2.5) is more efficient than the C-N scheme (4.7).

(ili) Convergence of Iterations

In order to solve the scheme (2.5), the iterative method (2.14)(2.17) was given
in the Section 2. Convergence of the iterative method dependent on the step sizes
#-and 1. But, our practical computation shows that the iterative method is con-
vergent for various step sizes, which can be taken to ensure necessary accuracy of
the approximation solution. The number of iterations is 3-8 for A< 0.5 and 1<0.3
and 17 for 2= 0.5 and 7 = 2. Therefore, the iterative method (2.14}-(2.17) is suitable
and efficient.
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